
 

ABSTRACT 

The aim of this paper is to address some key design 

issues of a multi-tier multi-agent system (M2S), such 

as to define the control architecture of the multiple 

agents within the two tiers (e.g. centralized and 

distributed), and the control or reasoning algorithm 

that allows individual agent to organize its behaviors, 

learn and/or adapt to unknown and dynamic 

conditions. 

 

1. INTRODUCTION 

 

Recently, a multi-tier multi-agent system including 

unmanned ground vehicles (UGVs) and unmanned 

aerial vehicles (UAVs) has been recommended as a 

promising approach for future planetary 

reconnaissance missions [21].  This approach is 

primarily based on cooperative control between the 

UGV and UAV. For example, multiple UGVs with 

feedback from a UAV can potentially survey a large 

planetary area more quickly and safely and thus 

improve the scientific return of the mission. The M2S 

has homogeneous agents in each tier and thus 

improves redundancy in the mission. It can also be 

extended to 3 or more tiers of heterogeneous agents, 

e.g. by including satellites in orbit as the 3
rd

 tier 

agents.  

The M2S can be configured in many different ways 

in terms of communication (data sharing) and 

cooperative control among the agents.  In this paper, 

we propose a M2S with some basic configuration as 

follows. This results in a simple but effective system 

that can be implemented in a planetary mission at 

relatively low cost. 

� Each UAV or UGV is a fully functional agent 

and can work independently. 

� Each UGV receives data generated by the UAV 

periodically as an additional sensor input, such 

as terrain condition, localization data, etc.  

� Each UGV reports to the UAV periodically on 

its health condition.  

� The UGV can send emergency signal to the 

UAV if there is a fault in its system. The UAV 

decides whether to relay the UGV data to other 

UGVs and to whom. This means the UGV can 

receive data generated by other UGVs via the 

UAV and there is no direct communication 

between the UGVs. 

 

Under this basic configuration, the UAV acts more 

like a coordinator of information sharing. If the UAV 

fails to work properly, the UGVs are still capable of 

making decisions based on their onboard sensor data. 

Complete control architecture of the M2S also needs 

to explain the control configuration within each 

agent. This is normally associated with design of an 

automated control algorithm for the agent operation.  

Over the half century, NASA has been developing 

some single-tier multi-agent control architectures for 

planetary applications. One example is the Control 

Architecture for Multi-robot Planetary OUTpost 

(CAMPOUT) [12]. The CAMPOUT focuses on 

coordination of the agent behaviors. The primitive 

behaviors are basic behaviors of each agent that can 

form the so-called composite and group behaviors. 

The shadow behaviors result from communication 

between the agents and can be used to form group 

behaviors. A behavior coordinator is responsible to 

handle conflicts between current behaviors and 

feedback from actuators by setting up behavior 

priority. Command fusion is the key for this 

architecture, which regulates group behaviors of each 

agent to be cooperative, not competitive. The 

CAMPOUT architecture works statically with 

existing (or pre-defined) behaviors of the agents. This 
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implies its ability to adapt and cope with an uncertain 

environment is limited.  

 

The Multi-rover Integrated Science Understanding 

System (MISUS) is another example of a multi-agent 

control architecture designed for planetary 

exploration [20]. The general configuration is 

considerably extended from the CAMPOUT. The key 

features added to the architecture include data 

analysis via learning and dynamic 

planning/scheduling components. The rovers or 

UGVs can therefore reason how to achieve a goal, 

and learn to evaluate what new goal should be 

performed such as observing and gathering scientific 

data. The agent behaviors are selected dynamically 

based on CASPER planning and scheduling [17]. A 

central planner generates the team objective and 

assigns it to each agent. Each agent will inform status 

(i.e., whether or not the team goal has been achieved) 

back to the central planner for re-planning. The 

MISUS enables the agents to reason where they learn 

cooperatively how to gather and select their 

behaviors to achieve the team goal. The MISUS 

cannot though be used to control a M2S directly.  

The ALLIANCE proposed by Parker in [9] is 

architecture for fault tolerant multi-agent cooperation 

on mobile robots. By using adaptive behavior 

selection, it allows agents to adapt to high-risk fault 

and dynamic environment. The architecture requires 

the agent to be capability of communicating with 

other agents and recognizing the behavior performed 

by other agent in case of communication failure. This 

is very costly to implement in a planetary 

reconnaissance mission and thus is not compatible 

with the basic configuration of the proposed M2S.  

In this paper, we propose a novel Reasoning and 

Control Architecture (RACA) that enables 

autonomous operation of the M2S. The remaining of 

the paper introduces the working principle of the 

RACA and associated learning technique. Computer 

simulation can validate results are presented at the 

end of the paper followed by performance evaluation 

both individually and as a team. Multi-agent learning 

basically allows agents to collaboratively select 

actions that maximize their own, as well as the team 

output, and to cope with uncertainties and 

unpredictable failures.  

2. PROPOSED RACA 

The RACA is proposed to enable autonomous 

operation of the M2S and satisfy planetary 

reconnaissance mission requirements. Main design 

objectives are summarized as follows: 

• To support autonomous cooperation between the 

UAV and UGV of the defined M2S; 

• To enable decision making of the agent via 

learning in the unknown environment and select 

effective behaviors to fulfill both individual and 

team goals, given a mission task;  

• Is capable of fault tolerance for the M2S; 

• Is scalable to more complex M2S configurations.  

 

 

Fig 1 RACA Basic Configuration 

The RACA is illustrated in Fig 1 that explains the 

basic configuration of the M2S using one 

representative UAV and UGV. Each agent either 

UAV or UGV is an intelligent and behavior-based 

entity. The architecture allows information exchange 

between the UAV and UGV on a regular basis as 

well as in an emergency condition.  Such exchange 

can be considered as additional sensor input to each 

agent and used for selection of its behaviors. The 

RACA includes the control configuration and 

learning algorithms to enable the agents make 

decisions and respond effectively to a mission task. 

The agent can learn to choose the optimal set of 

behaviors for a given individual and team goal. Fault 

a UGV (red circled in Fig2) is running out of power 
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and informs the UAV. The decision of the UAV is to

tolerance of the UGVs is realized by 

coordination. 

2.1 Information Coordinator  

 

As aforementioned, the UAV is an information 

coordinator in the M2S. There is no direct 

communication between the UGVs. Data is updated 

between the UAV and UGV periodically. A major 

function of the UAV is to screen data from the UGV 

and relay to other UGVs based on certain decision 

criteria (or goal). This helps to decrease computation 

and communication load of individual UGV and still 

allows cooperation between the UGVs. For example, 

relay this information to a selected number of UGVs 

(green circled) that are in better position to help the 

troubled UGV (such as in close vicinity, and 

finishing own tasks, etc).  

 

 

Fig 2 UAV Decision making

 

2.2 Behavior Definition and Representati

 

In the RACA, the agent behaviors are classified into 

three groups:  

• Common Sense Behaviors (CSB or Skills)

represent a set of basic behaviors or 

agent before any learning takes place, e.g. 

moving from point to point, hazard detection for 

UGV, and relay data for UAV, etc.

• Learned Behaviors (LB or Roles)

behaviors learnt by the agent in a specific state or 
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Behavior Definition and Representation 

In the RACA, the agent behaviors are classified into 

Common Sense Behaviors (CSB or Skills) 

represent a set of basic behaviors or skills of an 

agent before any learning takes place, e.g. 

moving from point to point, hazard detection for 

GV, and relay data for UAV, etc. 

Learned Behaviors (LB or Roles) represent 

behaviors learnt by the agent in a specific state or 

roles the agent play to achieve the individual 

goal. 

• Specifically Cooperative Behaviors (SCB or 

Group) represents behaviors post

an agent in a specific state according to the team 

goal or strategy. 

 

The learning process to select LB and SCB is carried 

out in sequence in order to achieve individual goal 

and team goal respectively. The LB are obtained 

from the CSB after individual learning. Selected LB 

are the most effective CSB to achieve the individual 

goal in a specific state. Similarly, SCB learnt from 

the CSB and/or LB are used to achieve the team goal.  

If to use the same example as in the 

Reference source not found.

decision making process of a green circled UGV. 

Similar theory applies to the UAV, in which case 

cooperative learning is triggered by fault signal 

received from the UGV. 

Figure 3 Decision Making Process

2.3 Learning and Behavior selection mechanism

 

Unmanned aerial vehicle 

Unmanned 

ground vehicle 

the agent play to achieve the individual 

Specifically Cooperative Behaviors (SCB or 

represents behaviors post to learning of 

an agent in a specific state according to the team 

The learning process to select LB and SCB is carried 

out in sequence in order to achieve individual goal 

pectively. The LB are obtained 
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are the most effective CSB to achieve the individual 

goal in a specific state. Similarly, SCB learnt from 

the CSB and/or LB are used to achieve the team goal.  
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decision making process of a green circled UGV. 

Similar theory applies to the UAV, in which case 

cooperative learning is triggered by fault signal 
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In the RACA, reinforcement learning (RL) technique 

is employed for the agent to select behaviors 

automatically. The RL has been a popular approach 

to support cooperative control of the multi-agent 

system [2-4, 8, 11] as this technique does not require 

off-line training nor rely on a ‘teacher’ knowing the 

absolute answer to the question. It enables the agent 

to learn by interaction with the unknown environment 

and learn from ‘experience’ by maximizing a 

learning reward associated with its goal. The RL 

results in a pair of behavior and state (as a sequence) 

for the agent to achieve particular objectives.  

At the beginning, each UGV is assigned its individual 

goal before the Q-learning procedure. The UGV then 

learns to obtain a sequence of effective behaviors (i.e. 

LB) to reach the goal, known as Individual learner 

(IL) process. In case the agent is interrupted by UAV 

due to updated information, the agent learns for the 

SCB to optimize both individual and team goals, 

known as Joint action learner (JAL) process. Basic 

formulation of RL and Q-learning has been 

developed widely and variously, however many 

derivatives are still based on RL basic formulation as 

fundamental terminologies are proposed below 

• t - discrete time step 

• ��- state space at time t 

• ��- action performed at time f, related to �� 
• �� - reward at time t, related to  ���� ��� ����   

• � - policy, mapping state to action 

• �� - optimal policy (design goal) 

• � – value function, by � !�" is value of state s 

under policy � 

Finding optimal behavior through particular models 

is another step to be concerned about. Generally, the 

model can be divided appropriately into finite and 

infinite horizontal models. But to satisfy 

mathematical convergence (bounding) without 

information of the exact length of learning life time, 

infinite horizontal model is thus preferred, as 

mentioned below. 

# $%&���
∞

�'(
)                      !1" 

The above equation is a general form of infinite 

horizontal model with discount rate (&�". Learning is 

efficient in a long run as it is bounded by  &� to 

ensure convergence. The performance of learning is 

measured typically that learning algorithm converses 

to an optimal point and speed of convergence is 

satisfied seriously. For the most general problem, 

delayed reward is a form usually described in RL. 

Not only is immediate reward determined, but also 

considers future reward obtained at the next state. In 

association with this scenario, problem is modeled by 

using Markov Decision Process [14][6] which is 

described as follows. 

� A set of Action : + 

� A set of State : , 

� Scalar Reward :  - . , / + 0 1 

� State Transition Function : 2!�, �, � ′), mean 

probability that performing action � at state � 

leads to state �′ 
The proposal of this process is to find Optimal Policy 

[14]. Value function plays an important role in this 

mathematical formulation. In order to obtain �� 
policy, maximum value function can be derived by 

expectation of infinite horizontal reward model as the 

following. 

4�!�" 5  max  # !%&�
∞

�'(
�� "                     !2" 

A more practical form would be: 

4�!�" 5  max:  !  -!�, �"
;  & % 2!�, �, � ′

<′= >
" 4�!� ′"" , ?�

= ,                    !3" 
*By equation (3) optimal policy can be also inversely 

specified. 

Since solving the equation directly to find optimal 

policy is quite complicated, the learning process 

employs exploration method which has two 

alternative ways to proceed, Model-free and Model 

based. For Model – free, which is a general form, Q – 

learning is simpler understanding and modeling than 

that of Model based. Considering-- 



4�!�" 5  max: A� !�, �"                   !4" 
Equation (3), after replaced by equation (4), becomes 

A�!�, �" 5 -!�, �"
;  & % 2!�, �, � ′

<′= >
" max: A� !� ′, �′" 

?� = ,                    !5" 
Q value can be accurately estimated by updating 

(learning) recursively. Algorithm function can be 

called value iteration method [6][14], solved by 

dynamic programming. Action with maximum Q 

value is selected to perform in each state following 

this formulation. 

A!�, �" .5   A!�, �"; 
D E� ;  &max:′ A !�′, �′"
F  A!�, �"G                   !6" 

The approach to reach optimal state is highly 

dependent on how the agent acts whilst experiencing 

the environment, as well as having sufficient trial 

process in each state-action pairs. To ensure that Q 

learning would be converged to certain value, 

exploration strategy, therefore, must be well-defined. 

Conclusively, the procedure of learning algorithm 

yields the following: 

I�JKJ�LJMN A!O, P" ��QJK���JLR     
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         I�JKJ�LJMN O 
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         O a5   O′  
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After completing the above procedure, behavior with 

maximum Q value in particular state has a priority to 

perform. Keys of Q learning are firstly how to model 

reward function effectively in both IL and JAL, 

secondly how to select suitable exploration and 

exploitation method. Some of related researches 

show Q learning issue problem is that it’s slowly 

about to converge because effective exploration 

approach is not designed. 

2.3.1 Individual Leaner (IL) 

This learning scenario is almost similar to a general 

form of RL mentioned before. Algorithm follows 

classic approaches but is only partly adjusted as 

appropriate. Preliminarily, each UGV has the CSB, 

and is then assigned a reward function which only 

happens at the final state (generally where goal 

exists). Learning process is executed until it obtains 

the sequence of behaviors to achieve individual goal. 

All selected behaviors are mapped into LB. In IL 

approach a key to ensure that this algorithm can reach 

high performance is Weight factors. They are very 

critical in forcing algorithm to convert optimally. 

Weight factors can be listed as:-  

� Discount rate factor: Used to decide weighting 

between an immediate reward and future reward, 

ranging from 0 – 1. The lower weighting is, the 

higher UGV pay attention on immediate reward. 

� Learning rate factor: Adjust learning levels 

whether to keep high learning rate or 

de…..crease leaning rate, ranging from 0 – 1 

(maximum learning). 

� Exploitation factor: While in learning process, 

selection of each behavior is biased based on 

past and current probability value. For example, 

a behavior with higher Q value in current state is 



more likely to be selected. In our algorithm, 

Boltzmann exploration is deployed to define 

probability of each behavior, as can be seen in 

the following equation:- 

 

Ne!f" gh
∑ Ne!f′" ghf′

                     !7" 
 

Q(b) is Q value of behavior b 

T is temperature parameter which will control 

the convergence rate, and which will decrease 

over time. 

Whether or not the learning process is terminated 

depends on two main conditions. Termination 

happens when learning rate factor is equal to zero, 

which means no learning continues, or when the Q 

value is conversed to optimal value which means 

there is no change in decision while learning is 

continued. 

2.3.2 Joint Action Learner (JAL) 

In achieving team goal, each UGV is aware of other 

UGV’s action in a dynamic environment. As 

previously mentioned, it begins cooperative learning 

since the information has been updated via UAV, 

informing that there is an unexpected event or a 

disturbed strategy. The major difference between IL 

and JAL is the value estimation of behaviors. Rather 

than estimating the Q value of each behavior, JAL 

algorithm examines Reduced Profile which contains 

a set of behaviors potentially performed by each 

UGV in specific state. Each selected behavior will 

then be regarded as SCB of each UGV. The goal is 

the UGV tries to select behaviors to maximize Q 

value of reduced list. For example, at state S, UGV A 

is going to perform behavior A0 at the beginning. 

However, after observing that UGV B is performing 

behavior B1, Q value is therefore assigned to the 

profile which is a joint behavior <A0, B1>.  After 

UGV A learns sufficiently to trace the optimal 

behavior regarding UGV B, it can switch to the 

behavior maximizing Q value of reduced profile to 

satisfy cooperative condition. To implement this idea, 

designed algorithm is introduced as the following:- 

kN^J� J�JKJ�L �K�KN O 
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Regarding to communication scheme, UGV is 

interrupted by updated information and start learning 

to act cooperatively. Only the involved UGVs take 

part in this cooperative strategy, displayed in Fig 2. 

At first UGV initially believes in selected behavior 

from LB. Afterward, it tries to replace other possible 

behaviors into the same reduced profile. Based on the 

exploration strategy, the reduced profile which has 

the highest Q value is most likely to be selected. In 

each cycle, the selected reduced profile increases the 

learning rate which means it has higher possibility to 

converse eventually and it is going likely to be the 

optimal profile. The loop is terminated when one of 

involved UGVs decides to follow its selected 

behavior in reduced profile as selection probability is 

above threshold. Meanwhile other UGVs continue IL 

strategy based on LB. 

3. SIMULATION 

To demonstrate that RACA works effectively with 

space reconnaissance mission, the simulation is 

developed so as to reflect how RACA plays critically 

in achieving mission goal. In general, it consists of 

control systems with learning capabilities embedded, 



and also the modules representing the world model 

and the role of UAV, where information coordination 

of each UGV is happened.  

The simulation focuses mainly on comparing 

performance between single UGV and multi UGVs 

with UAV in this particular scenario. For a single 

UGV, UGV is assigned to survey an unknown terrain 

by using information only from itself (local vision 

and sensor). Additionally, the single UGV has no 

capability of learning before making a decision. In 

other words, the UGV can only perform behaviors 

commanded by mission controller at ground station. 

Surveying process continues until UGV receives 

stopping signal from the mission controller. 

However, the single UGV’s qualification is 

compensated in operating at a very high speed, and 

having very advanced equipment to achieve the 

mission. On contrary to the single UGV, multi UGVs 

work cooperatively with UAV by exchanging real 

time information. They also have a learning 

capability to help selecting an optimal behavior in a 

particular condition (state). Nevertheless, capability 

of each UGV is scaled down as the need of 

constructing 5 UGVs and 1 UAV. 

For an evaluation, the team of UGVs is capable of 

surveying all terrains. This mission takes explicitly 

lower time than the single one, including 

investigating and data collecting processes, as well as 

failure analyzing and repairing. Furthermore, the 

mission is very successful in collecting essential data 

from terrains and found objects. By communicating 

via UAV, failures happening during the mission are 

recovered quickly and effectively, demonstrating 

high redundancy. This explicitly means the increase 

of mission reliability. In view of learning capability, 

this allows UGVs to select optimal behaviors and to 

coordinate an action with other UGVs appropriately. 

It can be implied that this ability helps UGV to 

eliminate unnecessary actions for the early time.  

Comparatively, although single UGA perform 

surveying terrain faster than team of UGVs, team of 

UGVs achieves mission objectives in all aspects. 

Finally the result of simulation is illustrated by 

comparing single agent and multi agents in Table 1. 

Table 1 Comparison for Single UGV and Multiple 

UGV with UAV performance 

 Single UGV Multiple UGVs 

with UAV 

Time 

Consuming 

Consume more time Consume less time 

Information 

Gathering 

Gather only terrain 

information 

 

Gather successful any 

relevant information on 

the terrain 

Reliability If failed, it means 

mission is no longer 

work 

If failed, UGV is 

analyzed and repaired 

by one of other UGVs 

Optimization Without learning, 

only assigned 

behavior is 

performed. It means 

there is no optimal 

behavior selected 

Accompanying with 

learning, UGV is able 

to select optimal 

behavior in each state. 

Therefore, optimizing 

task and status. 

 

4. CONCLUSION 

 

RACA works effectively with learning capability 

(based on RL) as tested in both numerical result and 

simulation. It also improves a performance of space 

robotic reconnaissance mission, contributing to an 

effective and autonomous collaboration between 

UGVs and UAVs, maximizing scientific data return 

and enabling fault tolerant mechanisms. Moreover, 

RACA is capable in extending for more tiers in M2S 

in the future. Therefore, it is assured that the 

architecture supporting Multi-tier Multi-agents 

scenario is proved to be excellently suitable for space 

exploration mission. Such a Multi-tier Multi-agent 

scenario provides solid performance in various 

aspects, such as reasonable time consumption, high 

reliability and optimization in cooperative strategy. It 

can be clearly stated that this achievement can be 

benefit to upcoming space reconnaissance mission, 

especially in term of increase of autonomy. 
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